NX2139A

SINGLE CHANNEL MOBILE PWM AND LDO CONTROLLER PRELIMINARY DATA SHEET

TYPICAL APPLICATION

Figure1 - Typical application of NX2139A
ORDERING INFORMATION

Device	Temperature	Package	Pb-Free
NX2139ACMTR	$-10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	3X3 MLPQ-16L	Yes

ABSOLUTE MAXIMUM RATINGS

TON to GND ...3V to 28 V

CAUTION: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

PACKAGE INFORMATION

3×3 16-LEAD PLASTIC MLPQ		
		$\theta_{\mathrm{JA}} \approx 46^{\circ} \mathrm{C} / \mathrm{W}$
$\begin{array}{r} \mathrm{VO} \\ \mathrm{VCC} \\ \mathrm{FB} \\ \text { PGOOD } \end{array}$		HDRV SW OCSET PVCC

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{VIN}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
VIN						
recommended voltage range	$\mathrm{V}_{\text {IN }}$		4.5		24	V
Shut down current		ENLDO=GND, ENSW=GND		1		uA
VCC,PVCC Supply Input voltage range	$\mathrm{V}_{\text {cc }}$		4.5		5.5	V
Operating quiescent current		$\begin{aligned} & \text { VFB=0.85V, ENLDO=GND, } \\ & \text { ENSW }=5 \mathrm{~V} \end{aligned}$		1.8		mA
Shut down current		ENLDO=GND, ENSW=GND		1		uA
Rev. 2.3 03/19/09 11861 Westerm Av	arden ©	Microsemi alog Mixed Signal Group CA. 92841, 800-877-6458. 714-898--812				

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
VCC UVLO Under-voltage Lockout threshold	$\mathrm{V}_{\text {cca }}$ UVLO		3.9	4.1	4.5	V
Falling VCC threshold			3.7	3.9	4.3	V
ON and OFF time TON operating current		$\mathrm{VIN}=15 \mathrm{~V}$, Rton=1 Mohm		15		uA
ON -time		$\begin{aligned} & \mathrm{VIN}=9 \mathrm{~V}, \mathrm{VOUT}=0.75 \mathrm{~V}, \\ & \text { Rton }=1 \mathrm{Mohm} \end{aligned}$	312	390	468	ns
Minimum off time			380	590	800	ns
FB voltage Internal FB voltage	Vref		0.739	0.75	0.761	V
Input bias current					100	nA
Line regulation		VCC from 4.5V to 5.5V	-1		1	\%
OUTPUT voltage Output range			0.75		3.3	V
VOUT shut down discharge resistance		ENSW/MODE=GND		30		ohm
Soft start time				1.5		ms
PGOOD				90		\% Vref
PGOOD delay after softstart		NOTE1		1.6		ms
PGOOD propagation delay filter		NOTE1		2		us
Power good hysteresis				5		\%
Pgood output switch impedance				13		ohm
Pgood leakage current				1		uA
SW zero cross comparator Offset voltage				5		mV
High Side Driver (CL=3300pF) Output Impedance, Sourcing Current	$\mathrm{R}_{\text {source }}$ (Hdrv)	$\mathrm{I}=200 \mathrm{~mA}$		1.5		ohm
Output Impedance, Sinking Current	$\mathrm{R}_{\text {sink }}$ (Hdrv)	$\mathrm{I}=200 \mathrm{~mA}$		1.5		ohm
Rise Time	THdrv(Rise)	10\% to 90\%		50		ns
Fall Time	THdrv(Fall)	90\% to 10\%		50		ns
Deadband Time	Tdead(L to H)	Ldrv going Low to Hdrv going High, 10% to 10%		30		ns
Low Side Driver (CL=3300pF) Output Impedance, Sourcing Current	$\mathrm{R}_{\text {source }}$ (Ldrv)	$\mathrm{I}=200 \mathrm{~mA}$		1.5		ohm
Output Impedance, Sinking Current	$\mathrm{R}_{\text {sink }}(\mathrm{Ldrv}$)	$1=200 \mathrm{~mA}$		0.5		ohm
Rise Time	TLdrv(Rise)	10\% to 90\%		50		ns
Fall Time	TLdrv(Fall)	90\% to 10\%		50		ns
Deadband Time	$\begin{gathered} \hline \text { Tdead(H to } \\ L) \end{gathered}$	SW going Low to Ldrv going High, 10% to 10%		10		ns
Rev. 2.3 03/19/09 Microsemi Analog Mixed Signal Group $\quad 3$						

Microsemi

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
ENSW/MODE threshold and bias current PFM/Non Synchronous Mode			$\begin{aligned} & 80 \% \\ & \text { VCC } \end{aligned}$		$\begin{gathered} \mathrm{VCC}+0 \\ .3 \mathrm{~V} \end{gathered}$	V
Ultrasonic Mode			$\begin{aligned} & 60 \% \\ & \text { VCC } \end{aligned}$		$\begin{aligned} & 80 \% \\ & \text { VCC } \end{aligned}$	V
Synchronous Mode		Leave it open or use limits in spec	2		$\begin{aligned} & 60 \% \\ & \text { VCC } \end{aligned}$	V
Shutdown mode			0		0.8	V
		ENSW/MODE=VCC		5		uA
Input bias current		ENSW/MODE=GND		-5		uA
LDO Controller Quiescent current		PWM OFF, LDOEN=HI, IOUT $=0 \mathrm{~mA}$		1		mA
LDOEN logic high voltage			2			V
LDOEN logic low voltage					0.8	V
LDOFB reference voltage			0.728	0.75	0.773	V
Output UVLO threshold				70		\%Vref
Open loop gain		NOTE1		60		DB
LDOFB input bias current					1	UA
LDODrv sourcing current		LDOFB=0.72V		2		mA
LDODrv sinking current		LDOFB=0.78V		2		mA
LDO PGOOD threshold				90		\%Vref
LDO PGOOD propagation delay filter		NOTE1		2		us
LDO PGOOD impedance				13		ohm
Current Limit Ocset setting current			20	24	28	uA
Over temperature						
Threshold		NOTE1		155		${ }^{\circ} \mathrm{C}$
Hysteresis				15		${ }^{\text {C }}$ C
Under voltage FB threshold				70		\%Vref
Over voltage Over voltage tripp point				125		\%Vref
Internal Schottky Diode Forward voltage drop		Forward current=50mA		500		mV

NOTE1: This parameter is guaranteed by design but not tested in production(GBNT).

NX2139A

PIN DESCRIPTIONS

PIN NUMBER	PIN SYMBOL	PIN DESCRIPTION
1	VOUT	This pin is directly connected to the output of the switching regulator and senses the VOUT voltage. An internal MOSFET discharges the output during turn off.
2	VCC	This pin supplies the internal 5 V bias circuit. A 1uF X7R ceramic capacitor is placed as close as possible to this pin and ground pin.
3	FB	This pin is the error amplifiers inverting input. This pin is connected via resistor divider to the output of the switching regulator to set the output DC voltage from 0.75 V to 3.3 V .
4	PGOOD	PGOOD indicator for switching regulator. It requires a pull up resistor to Vcc or lower voltage. When FB pin reaches 90% of the reference voltage PGOOD transitions from LO to HI state.
5	LDOPG	PGOOD indicator for LDO, requires a pull up resistor to Vcc or lower voltage. When LDOFB pin reaches 90% of the reference voltage PGOOD transitions from LO to HI state.
6	LDOFB	This pin is the error amplifiers inverting input. This pin is connected via resistor divider to the output of the LDO to set the output DC voltage.
7	LDODRV	The drive signal for external LDO N channel MOSFET.
8	LDRV	Low side gate driver output.
9	PVCC	Provide the voltage supply to the lower MOSFET drivers. Place a high frequency decoupling capacitor 1 uF X5R to this pin.
10	OCSET	This pin is connected to the drain of the external low side MOSFET and is the input of over current protection(OCP) comparator. An internal current source is flown to the external resistor which sets the OCP voltage across the Rdson of the low side MOSFET.
11	SW	This pin is connected to source of high side FETs and provide return path for the high side driver. It is also the input of zero current sensing comparator.
12	HDRV	High side gate driver output.
13	BST	This pin supplies voltage to high side FET driver. A high freq 1uF X7R ceramic capacitor and 2.2 hm resistor in series are recommended to be placed as close as possible to and connected to this pin and SW pin.
14	ENLDO	LDO enable input functions only when ENSW/MODE is not shutdown.
15	ENSW/ MODE	Switching converter enable input. Connect to VCC for PFM/Non synchronous mode, connected to an external resistor divider equals to $70 \% \mathrm{VCC}$ for ultrasonic, connected to GND for shutdown mode, floating or connected to 2 V for the synchronous mode.
16	TON	VIN sensing input. A resistor connects from this pin to VIN will set the frequency. A 1 nF capacitor from this pin to GND is recommended to ensure the proper operation.
PAD	GND	Power ground.

Microsemi

BLOCK DIAGRAM

Figure 2 - Simplified block diagram of the NX2139A

TYPICAL APPLICATION

(VIN=7V to 22V, SW VOUT=1.8V/7A, LDO VOUT=1.5V/2A)

Figure 3 - Demo board schematic

Bill of Materials

Item	Quantity	Reference	Value	Manufacture
1	2	Cl1	$10 \mathrm{uF} / 25 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$	
2	2	CO2	$10 \mathrm{uF} / 6.3 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$	
3	1	CO1	2 R5TPE330MC	SANYO
4	3	C1,C2,C4	1 uF	
5	2	C3,C5	1 nF	
6	1	C6	33 nF	
7	1	C7	1.5 nF	
8	1	C8	330 pF	
9	1	Lo	DO5010H-152	COILCRAFT
10	1	M1	IRF7807	IR
11	1	M2	AO4714	AOS
12	1	M3	SI4800	PHILIPS
13	2	R1,R3	100 k	
14	1	R2	10	
15	1	R4	1 M	
16	1	R5	5 k	
17	1	R6	10.5 k	
18	3	R7,R10,R11	7.5 k	
19	1	R8	50	NEXSEM INC.
20	1	R9	20 k	
21	2	R12,R13	2.2	
22	1	U1	NX2139A	

Demoboard Waveforms

Fig. 4 Startup (CH1 1.8V OUTPUT, CH2 1.5V LDO, CH3 SW PGOOD, CH4 LDO PGOOD)

Fig. 6 LDO output transient with SW in PFM mode (CH1 1.8V OUTPUT AC, CH2 1.5V LDO AC, CH4 LDO OUTPUT CURRENT)

Fig. 8 Start into short (CH1 VIN, CH2 5V VCC, CH4 INDUCTOR CURRENT)

Fig. 5 Turn off (CH1 1.8V OUTPUT, CH2 1.5V LDO, CH3 SW PGOOD, CH4 LDO PGOOD)

Fig. 7 SW output transient (CH 11.8 V OUTPUT AC, CH2 1.5V LDO AC, CH4 1.8V OUTPUT CURRENT)

Fig. 9 VOUT ripple @ VIN=12V,IOUT=4A (CH1 SW, CH3 VOUT AC)

Microsemi
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=1.8 \mathrm{~V}$

Fig. 10 Output efficiency

Microsemi

APPLICATION INFORMATION

Symbol Used In Application Information:

Vin - Input voltage

Vout - Output voltage
lout - Output current
$\Delta V_{\text {RIPPLE }}$ - Output voltage ripple
Fs - Working frequency
Δ IIIPPLE - Inductor current ripple

Design Example

The following is typical application for NX2139A, the schematic is figure 1.

$$
\begin{aligned}
& \text { Vin }=7 \text { to } 22 \mathrm{~V} \\
& \text { Vout }=1.8 \mathrm{~V} \\
& \mathrm{Fs}_{\mathrm{s}=220 \mathrm{kHz}} \\
& \text { lout }=7 \mathrm{~A} \\
& \Delta \mathrm{~V}_{\text {RIPPLE }<=60 \mathrm{mV}} \\
& \Delta \mathrm{~V}_{\text {Droop }<=60 \mathrm{mV}} @ 3 \mathrm{~A} \text { step }
\end{aligned}
$$

On_Time and Frequency Calculation

The constant on time control technique used in NX2139A delivers high efficiency, excellent transient dynamic response, make it a good candidate for step down notebook applications.

An internal one shot timer turns on the high side driver with an on time which is proportional to the input supply V_{IN} as well inversely proportional to the output voltage $\mathrm{V}_{\text {out. }}$ During this time, the output inductor charges the output cap increasing the output voltage by the amount equal to the output ripple. Once the timer turns off, the Hdrv turns off and cause the output voltage to decrease until reaching the internal FB voltage of 0.75 V on the PFM comparator. At this point the comparator trips causing the cycle to repeat itself. A minimum off time of 400 nS is internally set.

The equation setting the On Time is as follows:

$$
\begin{align*}
& \mathrm{TON}=\frac{4.45 \times 10^{-12} \times \mathrm{R}_{\text {TON }} \times \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}-0.5 \mathrm{~V}} \tag{1}\\
& \mathrm{~F}_{\mathrm{S}}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times \mathrm{TON}} \tag{2}
\end{align*}
$$

In this application example, the RTON is chosen to be 1 Mohm , when VIN $=22 \mathrm{~V}$, the TON is 372 nS and
F_{s} is around 220 kHz .

Output Inductor Selection

The value of inductor is decided by inductor ripple current and working frequency. Larger inductor value normally means smaller ripple current. However if the inductance is chosen too large, it brings slow response and lower efficiency. The ripple current is a design freedom which can be decided by design engineer according to various application requirements. The inductor value can be calculated by using the following equations:

$$
\begin{align*}
& \mathrm{L}_{\text {OUT }}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{T}_{\text {ON }}}{\mathrm{I}_{\text {RIPLEE }}} \tag{3}\\
& \mathrm{I}_{\text {RIPPLE }}=\mathrm{k} \times \mathrm{I}_{\text {OUTPUT }}
\end{align*}
$$

where k is percentage of output current.
In this example, inductor from COILCRAFT DO5010H-152 with $\mathrm{L}=1.5 \mathrm{uH}$ is chosen.

Current Ripple is recalculated as below:

$$
\begin{aligned}
\mathrm{I}_{\text {RIPPLE }} & =\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{T}_{\text {ON }}}{\mathrm{L}_{\text {OUT }}} \\
& =\frac{(22 \mathrm{~V}-1.8 \mathrm{~V}) \times 372 \mathrm{nS}}{1.5 \mathrm{uH}} \\
& =5 \mathrm{~A}
\end{aligned}
$$

Output Capacitor Selection

Output capacitor is basically decided by the amount of the output voltage ripple allowed during steady state(DC) load condition as well as specification for the load transient. The optimum design may require a couple of iterations to satisfy both conditions.

Based on DC Load Condition

The amount of voltage ripple during the DC load condition is determined by equation(5).

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {RIPPLE }}=\mathrm{ESR} \times \Delta \mathrm{I}_{\mathrm{RIPPLE}}+\frac{\Delta \mathrm{I}_{\text {RIPPLE }}}{8 \times \mathrm{F}_{\mathrm{s}} \times \mathrm{C}_{\text {OUT }}} \tag{5}
\end{equation*}
$$

Where ESR is the output capacitors' equivalent series resistance, $\mathrm{C}_{\text {out }}$ is the value of output capacitors.

Typically POSCAP is recommended to use in NX2139's applications. The amount of the output voltage ripple is dominated by the first term in equation(5)
and the second term can be neglected.
For this example, one POSCAP 2R5TPE330MC is chosen as output capacitor, the ESR and inductor current typically determines the output voltage ripple. When VIN reach maximum voltage, the output voltage ripple is in the worst case.

$$
\begin{equation*}
\mathrm{ESR}_{\text {desire }}=\frac{\Delta \mathrm{V}_{\text {RIPPLE }}}{\Delta \mathrm{I}_{\mathrm{RIPPLE}}}=\frac{60 \mathrm{mV}}{5 \mathrm{~A}}=12 \mathrm{~m} \Omega \tag{6}
\end{equation*}
$$

If low ESR is required, for most applications, multiple capacitors in parallel are needed. The number of output capacitor can be calculate as the following:

$$
\begin{aligned}
& N=\frac{E S R_{E} \times \Delta I_{\text {RIPPLE }}}{\Delta V_{\text {RIPPLE }}} \\
& N=\frac{12 m \Omega \times 5 A}{60 \mathrm{mV}} \\
& N=1
\end{aligned}
$$

The number of capacitor has to be round up to a integer. Choose $\mathrm{N}=1$.

Based On Transient Requirement

Typically, the output voltage droop during transient is specified as
$\Delta \mathrm{V}_{\text {droop }}<\Delta \mathrm{V}_{\text {tran }} @$ step load $\Delta \mathrm{I}_{\text {STEP }}$
During the transient, the voltage droop during the transient is composed of two sections. One section is dependent on the ESR of capacitor, the other section is a function of the inductor, output capacitance as well as input, output voltage. For example, for the overshoot when load from high load to light load with a $\mathrm{Dl}_{\text {STEP }}$ transient load, if assuming the bandwidth of system is high enough, the overshoot can be estimated as the following equation.

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {overshoot }}=\mathrm{ESR} \times \Delta \mathrm{I}_{\text {step }}+\frac{\mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \mathrm{C}_{\text {out }}} \times \tau^{2} \tag{8}
\end{equation*}
$$

where τ is the a function of capacitor,etc.
$\tau=\left\{\begin{array}{l}0 \quad \text { if } \quad \mathrm{L} \leq \mathrm{L}_{\text {crit }} \\ \frac{\mathrm{L} \times \Delta \mathrm{I}_{\text {step }}}{\mathrm{V}_{\text {OUT }}}-\mathrm{ESR} \times \mathrm{C}_{\text {oUT }} \quad \text { if } \quad \mathrm{L} \geq \mathrm{L}_{\text {crit }}\end{array}\right.$
where

$$
\begin{equation*}
\mathrm{L}_{\text {crit }}=\frac{\mathrm{ESR} \times \mathrm{C}_{\mathrm{ouT}} \times \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\text {step }}}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \times \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\text {step }}} \tag{10}
\end{equation*}
$$

where $E S R_{E}$ and C_{E} represents ESR and capacitance of each capacitor if multiple capacitors are used in parallel.

The above equation shows that if the selected output inductor is smaller than the critical inductance, the voltage droop or overshoot is only dependent on the ESR of output capacitor. For low frequency capacitor such as electrolytic capacitor, the product of ESR and capacitance is high and $\mathrm{L} \leq \mathrm{L}_{\text {crit }}$ is true. In that case, the transient spec is mostly like to dependent on the ESR of capacitor.

Most case, the output capacitor is multiple capacitor in parallel. The number of capacitor can be calculated by the following

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \Delta \mathrm{I}_{\text {step }}}{\Delta \mathrm{V}_{\text {tran }}}+\frac{\mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \mathrm{C}_{\mathrm{E}} \times \Delta \mathrm{V}_{\text {tran }}} \times \tau^{2} \tag{11}
\end{equation*}
$$

where

$$
\tau=\left\{\begin{array}{l}
0 \quad \text { if } \quad \mathrm{L} \leq \mathrm{L}_{\text {crit }} \tag{12}\\
\frac{\mathrm{L} \times \Delta \mathrm{I}_{\text {step }}}{\mathrm{V}_{\text {out }}}-\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \quad \text { if } \quad \mathrm{L} \geq \mathrm{L}_{\text {crit }}
\end{array}\right.
$$

For example, assume voltage droop during transient is 60 mV for 3 A load step.

If one POSCAP 2R5TPE330MC(330uF, 12mohm ESR) is used, the crticial inductance is given as

$$
\begin{aligned}
& \mathrm{L}_{\text {crit }}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \times \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{I}_{\text {step }}}= \\
& \frac{12 \mathrm{~m} \Omega \times 3300 \mu \mathrm{~F} \times 1.8 \mathrm{~V}}{3 \mathrm{~A}}=23.76 \mu \mathrm{H}
\end{aligned}
$$

The selected inductor is 1.5 uH which is smaller than critical inductance. In that case, the output voltage transient mainly dependent on the ESR.
number of capacitor is

$$
\begin{aligned}
& \mathrm{N}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \Delta \mathrm{I}_{\text {step }}}{\Delta \mathrm{V}_{\text {tran }}} \\
& =\frac{12 \mathrm{~m} \Omega \times 3 \mathrm{~A}}{60 \mathrm{mV}} \\
& =0.6
\end{aligned}
$$

Choose $\mathrm{N}=1$.

Based On Stability Requirement

ESR of the output capacitor can not be chosen too low which will cause system unstable. The zero caused by output capacitor's ESR must satisfy the requirement as below:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{ESR}}=\frac{1}{2 \times \pi \times \mathrm{ESR} \times \mathrm{C}_{\mathrm{OUT}}} \leq \frac{\mathrm{F}_{\mathrm{SW}}}{4} . \tag{13}
\end{equation*}
$$

Besides that, ESR has to be bigger enough so that the output voltage ripple can provide enough voltage ramp to error amplifier through FB pin. If ESR is too small, the error amplifier can not correctly dectect the ramp, high side MOSFET will be only turned off for minimum time 400 nS . Double pulsing and bigger output ripple will be observed. In summary, the ESR of output capacitor has to be big enough to make the system stable, but also has to be small enough to satify the transient and DC ripple requirements.

Input Capacitor Selection

Input capacitors are usually a mix of high frequency ceramic capacitors and bulk capacitors. Ceramic capacitors bypass the high frequency noise, and bulk capacitors supply switching current to the MOSFETs. Usually 1uF ceramic capacitor is chosen to decouple the high frequency noise. The bulk input capacitors are decided by voltage rating and RMS current rating. The RMS current in the input capacitors can be calculated as:

$$
\begin{align*}
& \mathrm{I}_{\text {RMS }}=\mathrm{I}_{\text {OUT }} \times \sqrt{\mathrm{D}} \times \sqrt{1-\mathrm{D}} \\
& \mathrm{D}=\mathrm{T}_{\text {ON }} \times \mathrm{F}_{\mathrm{S}} \tag{14}
\end{align*}
$$

When $\mathrm{V}_{1 \mathrm{~N}}=22 \mathrm{~V}$, Vout $=1.8 \mathrm{~V}$, lout $=7 \mathrm{~A}$, the result of input RMS current is 1.9 A .

For higher efficiency, low ESR capacitors are recommended. One 10uF/X5R/25V and two 4.7uF/ X5R/25V ceramic capacitors are chosen as input capacitors.

Power MOSFETs Selection

The NX2139A requires at least two N-Channel power MOSFETs. The selection of MOSFETs is based on maximum drain source voltage, gate source voltage, maximum current rating, MOSFET on resistance
and power dissipation. The main consideration is the power loss contribution of MOSFETs to the overall converter efficiency. In this application, one IRF7807 for high side and one AO4714 with integrated schottky diode for low side are used.

There are two factors causing the MOSFET power loss:conduction loss, switching loss.

Conduction loss is simply defined as:

$$
\begin{align*}
& \mathrm{P}_{\text {HCON }}=\mathrm{I}_{\text {OUT }}{ }^{2} \times \mathrm{D} \times \mathrm{R}_{\text {DS(ON })} \times \mathrm{K} \\
& \mathrm{P}_{\text {LCON }}=\mathrm{I}_{\text {OUT }}{ }^{2} \times(1-\mathrm{D}) \times \mathrm{R}_{\text {DS(ON })} \times \mathrm{K} \tag{15}\\
& \mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {HCON }}+\mathrm{P}_{\text {LCON }}
\end{align*}
$$

where the Ros(on) will increases as MOSFET junction temperature increases, K is Ros(on) temperature dependency. As a result, Ros(on) should be selected for the worst case. Conduction loss should not exceed package rating or overall system thermal budget.

Switching loss is mainly caused by crossover conduction at the switching transition. The total switching loss can be approximated.

$$
\begin{equation*}
\mathrm{P}_{\text {sw }}=\frac{1}{2} \times \mathrm{V}_{\text {IN }} \times \mathrm{I}_{\text {OUT }} \times \mathrm{T}_{\text {sw }} \times \mathrm{F}_{\mathrm{s}} \tag{16}
\end{equation*}
$$

where lout is output current, T sw is the sum of T_{R} and T_{F} which can be found in mosfet datasheet, and Fs is switching frequency. Swithing loss Psw is frequency dependent.

Also MOSFET gate driver loss should be considered when choosing the proper power MOSFET. MOSFET gate driver loss is the loss generated by discharging the gate capacitor and is dissipated in driver circuits.It is proportional to frequency and is defined as:

$$
\begin{equation*}
P_{\text {gate }}=\left(Q_{\text {HGATE }} \times V_{\text {HGS }}+Q_{\text {LGATE }} \times V_{\text {LGS }}\right) \times F_{S} \tag{17}
\end{equation*}
$$

where Qhgate is the high side MOSFETs gate charge, Qlgate is the low side MOSFETs gate charge, V нas is the high side gate source voltage, and $\mathrm{V}_{\mathrm{LGS}}$ is the low side gate source voltage.

This power dissipation should not exceed maximum power dissipation of the driver device.

Output Voltage Calculation

Output voltage is set by reference voltage and external voltage divider. The reference voltage is fixed
at 0.75 V . The divider consists of two ratioed resistors so that the output voltage applied at the Fb pin is 0.75 V when the output voltage is at the desired value.

The following equation applies to figure 11, which shows the relationship between $\mathrm{V}_{\mathrm{OUT}}, \mathrm{V}_{\text {REF }}$ and voltage divider.

Figure 11 - Voltage Divider

$$
\begin{equation*}
R_{1}=\frac{R_{2} \times V_{\text {REF }}}{V_{\text {OUT }}-V_{\text {REF }}} \tag{18}
\end{equation*}
$$

where R_{2} is part of the compensator, and the value of R_{1} value can be set by voltage divider.

Mode Selection

NX2139A can be operated in PFM mode, ultrasonic PFM mode, CCM mode and shutdown mode by applying different voltage on ENSW/MODE pin.

When VCC applied to ENSW/MODE pin, NX2139A is In PFM mode. The low side MOSFET emulates the function of diode when discontinuous continuous mode happens, often in light load condition. During that time, the inductor current crosses the zero ampere border and becomes negative current. When the inductor current reaches negative territory, the low side MOSFET is turned off and it takes longer time for the output voltage to drop, the high side MOSFET waits longer to be turned on. At the same time, no matter light load and heavy load, the on time of high side MOSFET keeps the same. Therefore the lightier load, the lower the switching frequency will be. In ultrosonic PFM mode, the lowest frequency is set to be 25 kHz to avoid audio frequency modulation. This kind of reduc-
tion of frequency keeps the system running at light light with high efficiency.

In CCM mode, inductor current zero-crossing sensing is disabled, low side MOSFET keeps on even when inductor current becomes negative. In this way the efficiency is lower compared with PFM mode at light load, but frequency will be kept constant.

Over Current Protection

Over current protection for NX2139A is achieved by sensing current through the low side MOSFET. An typical internal current source of 24uA flows through an external resistor connected from OCSET pin to SW node sets the over current protection threshold. When synchronous FET is on, the voltage at node SW is given as

$$
V_{S W}=-I_{L} \times R_{\text {DSON }}
$$

The voltage at pin OCSET is given as
$\mathrm{I}_{\text {OCP }} \times \mathrm{R}_{\text {OCP }}+\mathrm{V}_{\mathrm{SW}}$
When the voltage is below zero, the over current occurs as shown in figure below.

Figure 12 - Over Voltage Protection

The over current limit can be set by the following equation.

$$
I_{\mathrm{SET}}=I_{\mathrm{OCP}} \times \mathrm{R}_{\mathrm{OCP}} / \mathrm{R}_{\mathrm{DSON}}
$$

If the low side MOSFET $R_{\text {DSon }}=10 \mathrm{~m} \Omega$ at the OCP occuring moment, and the current limit is set at 12A, then
$R_{\text {OCP }}=\frac{I_{\text {SET }} \times R_{\text {DSON }}}{I_{\text {OCP }}}=\frac{12 \mathrm{~A} \times 10 \mathrm{~m} \Omega}{24 \mathrm{uA}}=5 \mathrm{k} \Omega$
Choose $R_{\text {OCP }}=5 \mathrm{k} \Omega$

Power Good Output

Power good output is open drain output, a pull up resistor is needed. Typically when softstart is finised and FB pin voltage is over 90% of $\mathrm{V}_{\text {REF }}$, the PGOOD pin is pulled to high after a 1.6 ms delay.

Smart Over Output Voltage Protection

Active loads in some applications can leak current from a higher voltage than $\mathrm{V}_{\text {OUT }}$, cause output voltage to rise. When the FB pin voltage is sensed over 112% of $\mathrm{V}_{\text {REF }}$, the high side MOSFET will be turned off and low side MOSFET will be turned on to discharge the $\mathrm{V}_{\text {out }}$ NX2139A resumes its switching operation after FB pin voltage drops to $\mathrm{V}_{\text {REF }}$.

If FB pin voltage keeps rising and is sensed over 125% of $\mathrm{V}_{\text {REF }}$, the low side MOSFET will be latched to be on to discharge the output voltage and over voltage protection is triggered. To resume the switching operation, resetting voltage on pin VCC or pin EN is necessary.

Under Output Voltage Protection

Typically when the FB pin voltage is under 70% of $\mathrm{V}_{\text {REF }}$, the high side and low side MOSFET will be turned off. To resume the switching operation, VCC or ENSW has to be reset.

LDO Selection Guide

NX2139A offers a LDO controller. The selection of MOSFET to meet LDO is more straight forward. The MOSFET has to be logic level MOSFET and its Rdson at 4.5 V should meet the dropout requirement. For example.

$$
\begin{aligned}
& \mathrm{V}_{\text {LDoIN }}=1.8 \mathrm{~V} \\
& \mathrm{~V}_{\text {LDoout }}=1.5 \mathrm{~V} \\
& \mathrm{I}_{\text {Lood }}=2 \mathrm{~A}
\end{aligned}
$$

The maximum Rdson of MOSFET should be

$$
\begin{aligned}
\mathrm{R}_{\text {RDSON }} & =\left(\mathrm{V}_{\text {LDoin }}-\mathrm{V}_{\text {LDOOUT }}\right) \times \mathrm{I}_{\text {LOAD }} \\
& =(1.8 \mathrm{~V}-1.5 \mathrm{~V}) / 2 \mathrm{~A}=0.15 \Omega
\end{aligned}
$$

Most of MOSFETs can meet the requirement. More important is that MOSFET has to be selected right package to handle the thermal capability. For LDO, maximum power dissipation is given as

$$
\begin{aligned}
\mathrm{P}_{\text {LOSS }} & =\left(\mathrm{V}_{\text {LDOIN }}-\mathrm{V}_{\text {LDOOUT }}\right) \times \mathrm{I}_{\text {LOAD }} \\
& =(1.8 \mathrm{~V}-1.5 \mathrm{~V}) \times 2 \mathrm{~A}=0.6 \mathrm{~W}
\end{aligned}
$$

Select MOSFET SI4800 with $33 \mathrm{~m} \Omega \mathrm{R}_{\text {DSON }}$ is sufficient.

LDO Compensation

The diagram of LDO controller including VCC regulator is shown in the following figure.

Figure 13 - NX2139A LDO controller.

Rb and Cb have fixed value which is used to compensate the comparater of the LDO controller. Set $R b=50 o h m, C b=33 n F$.

For most low frequency capacitor such as electrolytic, POSCAP, OSCON, etc, the compensation parameter can be calculated as follows.

$$
C_{C}=\frac{1}{2 \times \pi \times F_{o} \times R_{f 1}} \times \frac{g_{m} \times E S R}{1+g_{m} \times E S R}
$$

where F_{o} is the desired crossover frequency.
Typically, when the POSCAP and electrical capacitor is chosen as output capacitor, crossover frequency F_{o} has to be 2 to 3 times higher than zero caused by ESR. In this example, we select $\mathrm{Fo}=150 \mathrm{kHz}$.
g_{m} is the forward trans-conductance of MOSFET. For SI4800, $\mathrm{g}_{\mathrm{m}}=19$.

Select Rf1=7.5kohm.
Output capacitor is Sanyo POSCAP 4TPE150MI with 150uF, ESR=18mohm.

$$
\mathrm{C}_{\mathrm{C}}=\frac{1}{2 \times \pi \times 150 \mathrm{kHz} \times 7.5 \mathrm{k} \Omega} \times \frac{19 \mathrm{~S} \times 18 \mathrm{~m} \Omega}{1+19 \mathrm{~S} \times 18 \mathrm{~m} \Omega}=36 \mathrm{pF}
$$

Typically C_{C} is chosen to be 1 to 1.5 times smaller than calculated value to compensate parasitic effect.

Here C_{c} is chosen to be 33 pF . For electrolytic or POSCAP, R_{c} is typically selected to be zero.
$R_{t 2}$ is determined by the desired output voltage.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{t} 2} & =\frac{\mathrm{R}_{\mathrm{ft}} \times \mathrm{V}_{\text {REF }}}{\mathrm{V}_{\text {LDOouT }}-\mathrm{V}_{\text {REF }}} \\
& =\frac{7.5 \mathrm{k} \Omega \times 0.75 \mathrm{~V}}{1.5 \mathrm{~V}-0.75 \mathrm{~V}} \\
& =7.5 \mathrm{k} \Omega
\end{aligned}
$$

Choose $\mathrm{R}_{12}=7.5 \mathrm{k} \Omega$.
When ceramic capacitors or some low ESR bulk capacitors are chosen as LDO output capacitors, the zero caused by output capacitor ESR is so high that crossover frequency F_{o} has to be chosen much higher than zero caused by R_{c} and C_{c} and much lower than zero caused by ESR. For example, 10uF ceramic is used as output capacitor. We select $F 0=300 \mathrm{kHz}$, $R_{t 1}=7.5 \mathrm{kohm}$ and select MOSFET SI4800($\mathrm{g}_{\mathrm{m}}=19$). R_{C} and C_{C} can be calculated as follows.

$$
\begin{aligned}
R_{\mathrm{C}} & =\mathrm{R}_{\mathrm{f} 1} \times \frac{2 \times \pi \times \mathrm{F}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{o}}}{g_{\mathrm{m}}} \times \frac{1+g_{\mathrm{m}} \times \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{I}_{\text {out }}}}{g_{\mathrm{m}} \times \frac{\mathrm{V}_{\text {out }}}{\mathrm{l}_{\text {OUT }}}} \\
& =7.5 \mathrm{k} \Omega \times \frac{2 \times \pi \times 300 \mathrm{kHz} \times 20 \mathrm{uF}}{19 \mathrm{~S}} \times \frac{1+19 \mathrm{~S} \times \frac{1.5 \mathrm{~V}}{2 \mathrm{~A}}}{19 \mathrm{~S} \times \frac{1.5 \mathrm{~V}}{2 \mathrm{~A}}} \\
& =14.9 \mathrm{k} \Omega
\end{aligned}
$$

Typically R_{c} is chosen to be 1 to 1.5 times smaller than calculated value to compensate parasitic effect. Choose $\mathrm{R}_{\mathrm{c}}=20 \mathrm{k} \Omega$.

$$
\begin{aligned}
\mathrm{C}_{\mathrm{C}} & =\frac{10 \times \mathrm{C}_{0}}{\mathrm{R}_{\mathrm{c}} \times \mathrm{g}_{\mathrm{m}}} \\
& =\frac{10 \times 20 \mathrm{uF}}{20 \mathrm{k} \Omega \times 19 \mathrm{~S}} \\
& =0.53 \mathrm{nF}
\end{aligned}
$$

Choose $\mathrm{C}_{\mathrm{C}}=1000 \mathrm{pF}$.

Current Limit for LDO

Current limit of LDO is achieved by sensing the LDO feedback voltage. When LDO_FB pin is below
70% of $\mathrm{V}_{\text {REF }}$, the IC goes into latch mode. The IC will turn off all the channel until VCC or ENSW resets.

Power Good for LDO

Power good output is open drain output, a pull up resistor is needed. Typically when softstart is finised and LDOFB pin voltage is over 90% of $\mathrm{V}_{\text {REF }}$, the LDOPGOOD pin is pulled to high.

Layout Considerations

The layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.

There are two sets of components considered in the layout which are power components and small signal components. Power components usually consist of input capacitors, high-side MOSFET, low-side MOSFET, inductor and output capacitors. A noisy environment is generated by the power components due to the switching power. Small signal components are connected to sensitive pins or nodes. A multilayer layout which includes power plane, ground plane and signal plane is recommended.

Layout guidelines:

1. First put all the power components in the top layer connected by wide, copper filled areas. The input capacitor, inductor, output capacitor and the MOSFETs should be close to each other as possible. This helps to reduce the EMI radiated by the power loop due to the high switching currents through them.
2. Low ESR capacitor which can handle input RMS ripple current and a high frequency decoupling ceramic cap which usually is 1 uF need to be practically touching the drain pin of the upper MOSFET, a plane connection is a must.
3. The output capacitors should be placed as close as to the load as possible and plane connection is required.
4. Drain of the low-side MOSFET and source of the high-side MOSFET need to be connected thru a plane and as close as possible. A snubber needs to be placed as close to this junction as possible.
5. Source of the lower MOSFET needs to be connected to the GND plane with multiple vias. One is not enough. This is very important. The same applies to the output capacitors and input capacitors.
6. Hdrv and Ldrv pins should be as close to MOSFET gate as possible. The gate traces should be wide and short. A place for gate drv resistors is needed to fine tune noise if needed.
7. Vcc capacitor, BST capacitor or any other bypassing capacitor needs to be placed first around the IC and as close as possible. The capacitor on comp to GND or comp back to FB needs to be place as close to the pin as well as resistor divider.
8. The output sense line which is sensing output back to the resistor divider should not go through high frequency signals, should be kept away from the inductor and other noise sources. The resistor divider must be located as close as possible to the FB pin of the device.
9. All GNDs need to go directly thru via to GND plane.
10. In multilayer PCB, separate power ground and analog ground. These two grounds must be connected together on the PC board layout at a single point. The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function.

Demoboard Schematic

Figure 14-NX2139A schematic for the demoboard layout

Demoboard Layout

Figure 15 Top layer

Figure 16 Ground layer

Figure 17 Power layer

Figure 18 Bottom layer

MLPQ 16 PIN 3×3 PACKAGE OUTLINE DIMENSIONS

THP VIEW
BロTTロM VIEW

TDP VIEW

SYMBOL	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	$0.203 R E F$		$0.008 R E F$	
B	0.180	0.300	0.007	0.012
D	2.950	3.050	0.116	0.120
D2	1.600	1.750	0.063	0.069
E	2.950	3.050	0.116	0.120
E2	1.600	1.750	0.063	0.069
e	0.50 BSC		0.50 BSC	
L	0.325	0.450	0.013	0.018
M	$1.5 R E F$		$0.059 R E F$	

